International Alliance of Dietary and Food Supplement Associations 16 May 2017 – Seoul, South Korea

The Impact of Nutrition on Aspects of Healthy Aging

Jeffrey Blumberg, PhD, FASN, FACN, CNS-S Friedman School of Nutrition Science and Policy Jean Mayer USDA Human Nutrition Research Center on Aging Tufts University Boston, MA USA

Successful Aging

Successful Aging

Age-related Declines in Physiological Function

Preventive Nutrition and Aging

YEARS

Functional Interconnections Between Hallmarks of Aging

López-Otin et al. Cell 2013

Telomere Attrition

Telomerase as a Target for Phytochemicals

Riscuta. J Nutr 2016

Multivitamin Use is Positively Associated with Telomere Length in Women Sister Study

Xu et al. Am J Clin Nutr 2009

DNA Damage Response and Aging

Nicolai et al. Aging 2015

β-Carotene, Lutein, and/or Lycopene Protect Against DNA Damage

RCT • n, 37 women • age, 50-70 y • duration, 56 d • dose, 12 mg/d

Scores	0	1	2	3	4
Percentage DNA in the tail	<5	5-20	20-40	40-80	>80
Average	2.5	12.5	30	60	90
	٠	٠	øer -	-	-
	0%	6.8%	25%	55%	85%
	۰		Entr		
	0%	12%	28%	65%	97%

Group	Day 1	Day 15	Day 29	Day 43	Day 57
Endogenous DNA damage $(\%)^2$					
Placebo $(n = 6)$	8.7 ± 0.8	9.0 ± 1.0	10.6 ± 1.3	9.2 ± 1.7	9.9 ± 1.5
Mixed carotenoids $(n = 8)$	10.9 ± 0.6	8.6 ± 0.6^{3}	7.9 ± 0.7^3	7.1 ± 0.5^3	7.0 ± 0.4^{3}
Lutein $(n = 8)$	10.6 ± 0.5	9.4 ± 0.7	9.5 ± 0.5	7.7 ± 0.5^{3}	7.1 ± 0.6^{3}
β -Carotene ($n = 7$)	12.4 ± 1.0^4	9.7 ± 0.9^5	8.6 ± 1.1^3	9.4 ± 0.9^{3}	8.0 ± 0.7^{3}
Lycopene $(n = 8)$	11.9 ± 0.9	10.0 ± 1.2	9.0 ± 0.9^{3}	7.5 ± 0.7^3	6.8 ± 0.6^{3}
Hydrogen peroxide-induced DNA damage (%) ⁶					
Placebo $(n = 6)$	42.1 ± 2.2	44.6 ± 2.4	39.7 ± 1.1	43.0 ± 2.9	40.6 ± 3.1
Mixed carotenoids $(n = 8)$	44.2 ± 2.5	43.2 ± 3.3	42.6 ± 2.9	37.1 ± 4.0	36.4 ± 2.2
Lutein $(n = 8)$	42.8 ± 2.4	43.5 ± 2.2	43.1 ± 2.0	41.5 ± 3.3	39.8 ± 3.0
β -Carotene ($n = 7$)	48.2 ± 2.3	44.5 ± 3.4	41.1 ± 2.4	44.2 ± 2.1	38.0 ± 1.8
Lycopene $(n = 8)$	50.5 ± 3.2	49.2 ± 3.6	51.1 ± 1.2	50.0 ± 2.3	42.5 ± 2.3

Zhao et al. Am J Clin Nutr 2006

DNA Damage: Genetics vs. Epigenetics

HATs Relax Chromatin → Gene Activation HDACs Close Chromatin → Gene Repression

Meeran et al. Clin Epigenetics 2010

Epigenetic Targets of Phytochemicals

Dietary Bioactive	Epigenetic Target	
Apigenin	₽ DNMT	
Allyl mecaptan	+HDAC	
Curcumin	+ DNMT, HDAC, HAT	
EGCG	+ DNMT, HAT	
Genistein	+ DNMT, HDAC + HAT	
Resveratrol	+DNMT +SIRT1	
Silymarin	◆SIRT1	
Sulforaphane	+ DNMT, HDAC	

Meeran et al. Clin Epigenetics 2010

Mitochondrial Dysfunction as a Target for Aging

López-Otin et al. Cell 2013

Dynamic Network Links Cellular Pathways of Inflammation and Mitochondrial Function to Food and Nutrients

Hernandez-Aguilera et al. Food Chem Tox 2016

Anti-inflammatory Actions of Vitamin E

Devaraj et al. *Free Radic Biol Med* 2000 Devaraj et al. *Circulation* 2000

Supoptimal Dietary Patterns are a Leading Cause of Poor Health

Refined grains, starches, sugars Fruits, vegetables, nuts Whole grains, legumes Yogurt, cheese, milk Fish, shellfish Processed meats, red meats Vegetable oils, specific fatty acids Coffee, tea, alcohol Sugary beverages, juice Minerals, antioxidants, phytochemicals Food-based dietary patterns Food processing, preparation methods Blood pressure Glucose-insulin homeostasis Liver fat synthesis Blood lipids, apolipoproteins Endothelial function Systemic inflammation Brain reward, craving Gut microbiome Satiety, hunger, obesity Adipocyte function Cardiac function Thrombosis, coagluation Vasular adhesion

Mozaffarian Circulation 2016

Evidence-based Dietary Priorities for Cardiometabolic Health

Mozaffarian Circulation 2016

Multivitamins Reduce the Risk of Total Cancer Physicians' Health Study II

RCT • n, 14,641 men • age, ≥50 y

Gaziano et al. JAMA 2012

Antioxidants Slow Progression to Age-Related Macular Degeneration Age-Related Eye Disease Study

RCT

• n, 4757

- age, 55-<u>80 y</u>
- F/U, 7 y

SUPPLEMENT

- Vitamin E, 400 IU
- Vitamin C, 500 mg
- β-Carotene, 15 mg
- Zinc, 80 mg
- Copper, 2 mg

AREDS Research Group. Arch Ophthalmol 2001

Flavonoid Intake at Midlife Promotes Healthy Aging in Women Nurses' Health Study

Prospective Cohort

- n, 13,818
- age, 74 y
- F/U, 15 y

Healthy Aging Criteria

- Survive to ≥70 y
- No major chronic diseases
- No major physical impairments in cognitive, physical function or mental health

Samieri et al. Am J Clin Nutr 2014

Flavonoid Intake at Midlife Promotes Healthy Aging in Women Nurses' Health Study

1517 of 13,818 women (11%) met criteria for healthy aging

Flavonoid	OR
Flavonols	18% 🚺
Flavones	32% 🕇
Flavanones	28% 🚺
Anthocyanins	25% 🕇
Total Flavonoids	47% 1

Samieri et al. Am J Clin Nutr 2014

Anthocyanins Reduce the Risk of Incident Hypertension and Myocardial Infarction Nurses Health Study II

n	87,242	93,600
Age, y	25-42	25-42
F/U, y	14	18
Q1 – Q5, mg/d	5.7-21.9	2.5-25.1

Quintile	iHT	<u></u>
1		
2	6% 📕	20% 🖊
3	7% 📕	29% 🖊
4	9% 📕	15% 🖊
5	13% 🖡	32% 🖊
P	0.0001	0.047

Cassidy et al. Am J Clin Nutr 2011 Circulation 2013

Healthy Aging as Outcome Criteria SU.VI.MAX 2

RCT

- n, 3996
- age, 65.3 ± 4.5 y
- intervention, 8 y
- F/U, 15 y

SUPPLEMENT

- Vitamin C, 120 mg
- Vitamin E, 30 mg
- β-carotene, 6 mg
- Selenium 100 μg
- Zinc, 20 mg

Criteriaª	Definition	Corresponding Rowe and Kahn Criterion ^b
Good physical functioning	SPPB ≥11 of 12	Maintenance of high physical and cognitive function
Good cognitive functioning	MMSE ≥27, RI-48 ≥19 of 48, and DK-TMT ≥5.5	Maintenance of high physical and cognitive function
No limitations in IADL	<1 limitation	Avoiding disease and disability
No depressive symptoms	CES-D <16 of 60	
No health-related limitations in social life	SF-36 responses: 1–2 for item 6 and 3–5 for item 10	Sustained engagement in social and productive activities
Good overall self-perceived health	SF-36 responses: 1–3 for item 1	
No function-limiting pain	SF-36 responses: 1–3 for item 7 and 1–2 for item 8	Avoiding disease and disability
No incident major chronic disease	No incident diabetes, cancer, or cardiovascular disease during follow-up	Avoiding disease and disability

Assmann et al. Am J Epidemiol 2015

Antioxidant Supplementation as a Predictor of Healthy Aging

Stratification Variable	Total n	RR
All participants	3996	7% 🚺
Men	2027	16%
Vitamin C status, <42 µmol/L	727	28%
Zinc status, <11.9 μmol/L	953	26%
F&V (<400 g/d)	1757	17%

Assmann et al. Am J Epidemiol 2015

Lutein is Concentrated in Brain and Correlated with Cognitive Performance in Elderly The Georgia Centenarian Study

Johnson et al. J Aging Res 2014

Lutein/Zeaxanthin Supplementation Reduces Psychological Stress and Serum Cortisol

Stringham et al. Nutr Neurosci 2017

Depression is one of the most prevalent and disabling disorders in the EU. MOODFOOD is one of the largest consortia investigating depression, and the first to address the role of nutrition in its prevention.

ABOUT:

RCT

- n, 1000
- age, 18-75 y
- BMI, 25-40
- duration, 12 mo

Supplement

- EPA + DHA, 1412 mg
- calcium, 100 mg
- selenium 30 μg
- folic acid, 400 μ g
- vitamin D3, 20 μg

Roca et al. BMC Psychiatry 2016

The Secret of Healthy Aging

The Role of Essential Nutrients in the Continuum of Health

Not Sick

WHO - Active Ageing: A Policy Framework

- Prevent and reduce the burden of excess disabilities, chronic disease and premature mortality
- Reduce risk factors associated with major diseases and increase factors that protect health throughout the life course
- Develop a continuum of affordable, accessible, highquality and age-friendly health and social services that address the needs and rights of people as they age
- Provide training and education to caregivers

World Health Organization; 2002 (WHO/NMH/NPH/02.8; http://whqlibdoc. who.int/hq/2002/who_nmh_nph_02.8.pdf)

